
Comparametric HDR (High Dynamic Range)
Imaging for Digital Eye Glass, Wearable Cameras,

and Sousveillance

Mir Adnan Ali, Tao Ai, Akshay Gill, Jose Emilio, Kalin Ovtcharov, and Steve Mann
Department of Electrical and Computer Engineering

University of Toronto

10 King’s College Rd, Toronto, ON, M5S3G4

Abstract—Wearable computing can be used to both extend
the range of human perception, and to share sensory experiences
with others. For this objective to be made practical, engineering
considerations such as form factor, computational power, and
power consumption are critical concerns. In this work, we
consider the design of a low-power visual seeing aid, and how to
implement computationally-intensive computational photography
algorithms in a small form factor with low power consumption.

We present realtime an FPGA-based HDR (High Dynamic
Range) video processing and filtering by integrating tonal and
spatial information obtained from multiple different exposures of
the same subject matter. In this embodiment the system captures,
in rapid succession, sets of three exposures, “dark”, “medium”,
and “light”, over and over again, e.g. “dark”, “medium”, “light”,
“dark”, “medium”, “light”, and so on, at 60 frames per second.
These exposures are used to determine an estimate of the
photoquantity every 1/60th of a second (each time a frame comes
in, an estimate goes out).

This allows us to build a seeing aid that helps people see
better in high contrast scenes, for example, while welding, or in
outdoor scenes, or scenes where a bright light is shining directly
into the eyes of the wearer. Our system is suitable for being built
into eyeglasses or small camera-based, lifeglogging, or gesture-
sensing pendants, and other miniature wearable devices, with
low-power and compact circuits that can be easily mounted on
the body.

I. INTRODUCTION

There are two broad categories of veillance, surveillance,
and sousveillance. The primary dictionary definition, given in
[1], of the word “surveillance” is

surveillance, n. : a watch kept over a person, group,
etc., especially over a suspect, prisoner, or the like:
The suspects were under police surveillance.

The etymology of this word is from the French word
“surveiller” which means “to watch over”. Specifically, the
word “surveillance” is formed from two parts: (1) the French
prefix “sur” which means “over” or “from above”, and (2) the
French verb “veiller” which means “to watch”.

A more recently coined word is the word “sousveillance”,
which is an etymologically correct opposite formed by re-
placing the prefix “sur”, in “surveillance”, with its opposite,
“sous”. Table I summarizes the veillances (surveillance and
sousveillances) and the etymologies of these words. Sousveil-
lance often refers to cameras borne by people, e.g. hand-held
cameras or wearable cameras [2], [3], [4], [5], [6], [7].

TABLE I: The Veillances: Surveillance and Sousveillance

English French
to see voir
to look (at) regarder

to watch veiller
watching (monitoring) veillance
watching over (oversight) surveillance
to oversee (to watch from above) surveiller
over (from above) sur
under (from below) sous
“undersight” (to watch from below) sousveillance

A. Motivation

In traditional photography or surveillance, a great deal of
effort is often expended to arrange the camera and lighting for
best exposure. Photographers will often position themselves
for best view, i.e. with the sun behind them, so that they are
not shooting directly into the light.

In our application, however, we wish to create a computer
vision system (seeing aid) that can work in any lighting
situation as might occur in day-to-day life. The Digital Eye
Glass, for example, observes the real world in a similar fashion
as the user observes (or would have observed, in the case
of a blind individual). The sousveillance user’s total lack
of control over lighting, combined with the wide variety of
lighting situations encountered in the course of a day (e.g. from
direct sunlight to candlelight) necessitate that any sousveillance
apparatus be equipped to produce a useful signal, without
requiring large battery packs or a large-aperture camera.

B. Related Work

Cameras can only take in photographs with limited dy-
namic range. One method to overcome this is to combine
differently exposed images of the same subject matter, pro-
ducing a High Dynamic Range result [8], [9], [10]. HDR
digital photography started almost 20 years ago. “The first
report of digitally combining multiple pictures of the same
scene to improve dynamic range appears to be Mann” [11].
Now, it is possible to produce HDR photography [12], [13]
and video [14], [15], [16], [17] in realtime, on both high-
power CPU/GPU systems, as well as low-power FPGA boards

107978-1-4799-0929-2/13/$31.00 c©2013 IEEE

������

��	

����������

���
��	�

�����������

��
������

��������

������
����	

�����

��	

�����

��	

�����

Fig. 1: System diagram. Input low-dynamic range (LDR) images are composited into an high-dynamic range (HDR) image, which is then tonemapped (spatio-
tonal mapping) to allow the end user to see details in the highlights and lowlights of the scene. In this work we examine resource-efficient implementation of
HDR Compositing and Tonemapping suitable for wearable computers. In particular, we target a low-power FPGA architecture with severe memory constraints.

[18]. However, other FPGA implementations have relied upon
methods that are less accurate than current CPU and GPU-
based methods. Namely, the earlier FPGA approach used
weighted sums for image compositing, and a simple inverse
power function to provide compression of the dynamic range.

In the present work, we demonstrate that it is possible to
implement an high-quality HDR system on FPGA. First we
present a novel method for implementing 2D lookup tables
(LUT) on an FPGA architecture, bounding the error and
space of a quadtree representation of the lookup table by the
expected use of the table, so that the LUT is compressed by
roughly 60×, this fitting within the block RAM of a typical
FPGA. Second, we present an FPGA implementation of the
domain transform, used for tonemapping, which is optimized
for wearable application since the FPGA platform uses far less
power than a traditional CPU or GPU implementation.

C. Description of Implementation

The overall system is as shown in Fig. 1, where a
wearable camera provides multiple exposures of the subject
matter, which are then composited into a single HDR image.
This image is then reduced to an LDR image for display
using the domain transform for tonemapping. This pipeline
is implemented completely in FPGA.

II. CCRF COMPRESSION

In [19], a novel method for HDR compositing is presented.
This method makes extensive use of a 2D lookup table, called
the CCRF (comparametric camera response function). The
CCRF is computed such that for two input pixel values as
returned from a camera, it returns a refined estimate of the
scene’s photoquantity.

The CCRF is used for HDR compositing by giving a
pairwise estimate of photoquantity q̂ from two pixel values f1
and f2 with exposure difference ΔEV . On systems without
significant memory constraints, the CCRF can be stored in a
2D lookup table. The lookup table contains N ×N elements
of pre-computed CCRF results on pairs of discretized f1 and
f2 values. Every CCRF has the domain of a comparagram [20]
and the range of a camera response function, as depicted in
Fig 2.

A. Quadtree Representation

The CCRF can also be represented in a tree structure,
rather than as a look-up table (LUT). For N × N elements,
we can generate a quadtree, where all nodes are square and
each parent node in such a tree contains four children nodes,
to fully represent the CCRF. If the quadtree is a complete tree
then it would have with log4 N

2 or log2 N levels. However, to
compress the tree, we use larger leaf nodes in smooth areas,
and in areas that are less-used, as shown in Fig. 2 (rightmost).

One method of generating such a tree is to recursively
divide a unit square into four quadrants (four smaller but equal
size squares). We can visualize the center of divided unit
square as the parent node of the four quadrants. The center
of each quadrant is considered a child node. Such process
is performed recursively in each quadrant until the root unit
square is divided into N×N equally sized squares. The bottom
nodes of the quadtree are the leaves of the tree, each of which
stores the CCRF lookup value of the corresponding pixel pair
(f1, f2).

B. Reducing the Quadtree

We observe that the most frequently accessed CCRF
values lie along the comparagram. Therefore, higher precision
on interpolation may not be necessary for CCRF lookup points
that are distant from the comparagram. This suggests that the
error constraint for the pair (f1, f2) should vary depending on
its likelihood of occurrence. To further compress the CCRF
lookup table, we can scale e by the number of observed
occurrences of the pair (f1, f2).

To reduce the number of elements needed for storage, we
proceed to interpolate the CCRF value fquadtree of a specific
pair (f1, f2) based on the corner values of the leaf node that
the point falls in. The value fquadtree interpolated based on
the corner values of the corresponding leaf node is compared
against the actual CCRF lookup value fCCRF, giving the error
e per table entry:

e = |fquadtree − fCCRF|. (1)

We accept the approximated result if e is within the error
threshold ethresh:

ethresh = emax/Cnormal (2)

where Cnormal = (Cij/Cmax + 1) is the normalized mass of
the comparagram at the point being estimated, and emax is the
maximum allowed error.

The purpose of the division is to obtain a more accurate
reconstruction at that point, at the cost of making the quadtree
larger. The closer the corner values are to the point of in-
terpolation yield a lower e, as CCRF lookup table generally
varies smoothly over a continuous and wide range of f1 and f2
values. Therefore, we expect that the density of the divisions
corresponds to the local gradient of the CCRF lookup table:
the higher the local gradient the more recursive divisions are
required to bring corners closer to the point; whereas the points
formed of a large and smooth region of CCRF with low local
gradient share the same corners.

The error of the interpolation against the original lookup
value at the input pair (f1, f2) should be within ethresh. This
error is affected by the interpolation method. Empirically,

108 2013 IEEE International Symposium on Technology and Society (ISTAS)

f
1

f2

Comparagram for ΔEV = 3
1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1 (0,0) (1,0)

(0,1) (1,1)

f1

f2

Fig. 2: Leftmost: A comparagram is a joint histogram of pixel values from
images of the same scene taken with different exposures. For any given sensor,
the comparagram is directly related to the camera response function. Areas
that are dark in this plot correspond to joint values that are more likely
to occur. Rightmost: Quadtree based representation of the CCRF based on
weighting from the comparagram. Areas of rapid change or high use are more
finely subdivided for greater accuracy. Inside each square the CCRF value is
approximated using bilinear interpolation based on the corner values. Note
the self-similar nature of the representation, with a granularity that matches
“regions of interest”, defined by the error in reconstruction and expected
frequency of use.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

f q
ua
dt
re
e

CCRF Reconstruction from Quadtree

f2
f1

f q
ua
dt
re
e

Fig. 3: Reconstruction of CCRF lookup table based on compressed quadtree
with error constraint of within one pixel value (α set to 1.0). The error bound
is weighted by the expected usage, so that values used more often have a
smaller error bound.

we find that bilinear interpolation works better than quartic
interpolation in terms of minimizing the number of lookup
points while satisfying the error constraint.

The CCRF lookup table we use has 1024 columns for f1
and 1024 rows for f2. Therefore, there is no point to construct a
tree that has more depth than log2 1024 = 10. We may constrain
the depth of the tree to fewer levels than 10 as long as the error
constraint is met. This affects the resulting number of entries of
the CCRF quadtree as well as the number of iterations required
for the search of a leaf node.

C. Corner Value Access

Each node of the quadtree is the center point of the square
that contains it. To access the corner values of a leaf node, we
can perform a recursive comparison of pair (f1, f2) to (fx,
fy) of the non-leaf nodes in the tree until a leaf node has
been reached, seen in Algorithm 1. The leaf nodes contain
memory addresses of corresponding corner values, which are
also stored in memory.

Algorithm 1 Recursive Quadtree Search
procedure GET CORNERS(f1, f2, Node)

if Node is not a leaf then
if f1 < Node→ fx then

if f2 < Node→ fy then
get corners(f1, f2, Node→Child(left, down))

else
get corners(f1, f2, Node→Child(left, up))

else
if f2 < Node→ fy then

get corners(f1, f2, Node→Child(right, down))
else

get corners(f1, f2, Node→Child(right, up))
else

retrieve corner values
end procedure

f1 f2

ff

Fig. 4: The top-level system consists of two main part: the addressing circuit
and the interpolation circuit. Input pixel values are normalized first to 16-bit
fixed point representation (f1, and f2) before entering the Boundary Block.
According to the boundary conditions of the two values, the circuit generates
controlling signals to the multiplexer tree, which selects the correct address
that correspond to the original quadtree node. The address is then used in
the interpolation circuit to retrieve the stored values that are necessary for
bilinear interpolation. After arithmetic circuit operation, the output fquadtree

can be further combined with fquadtree from another instance of the same
circuit.

III. QUADTREE IMPLEMENTATION

The algorithm can be implemented efficiently on an
medium-sized FPGA. Given a finalized quadtree data structure,
a system can be generated using software. The 4 corner values
are stored in ROMs implemented with on-chip Block RAM
(BRAM), and then selected using multiplexer chains based on
the input f1 and f2. An arithmetic circuit that follows after can
then calculate the result based on bilinear interpolation. Thus
as shown in Fig 4, the system consists of two major parts: an
addressing circuit and an interpolation circuit.

Since the size of quadtree can grow to ten levels, a
C program is written for generating the implementation of
the addressing circuit in Verilog HDL. Given a compressed
quadtree data structure, this program generates four ROM
initialization files and a circuit that retrieves corner values
stored in the ROMs based on the inputs.

A. Addressing Circuit

Each of the quadtree leaves needs a unique address. This
address is then used to retrieve the corresponding corner values
from ROM. As shown in Fig. 5, the circuit outputs the address

2013 IEEE International Symposium on Technology and Society (ISTAS) 109

����

����

����

����

����

����

���	

���

����

����

���

����

����

����

����

����

����

����

���� ����

Fig. 5: The relation between the original quadtree and its multiplexer
implementation makes it very easy to generate the Verilog using the same
quadtree date structure in software. Efficiently using 4-to-1 multiplexers in
the 6-LUT FPGA architecture can significantly reduce the resource usage
(i.e. each multiplexer is mapped to one logic slice, instead of three if 2-to-1
multiplexer is used) and code generation algorithm.

� ���� � 	
 �� �

�� ��

� �

�

��

Fig. 6: This circuit performs pipelined arithmetic that is necessary for bilinear
interpolation. The inputs to this circuit are loaded from Block RAM, which
is initialized according to the compressed quadtree structure. The red dotted
lines indicates the stage after which the data can be pipelined in order to have
higher throughput.

by comparing f1 and f2 with constant boundary values, in the
same way as we traverse the quadtree. The main function of
the Boundary Comparator is to send the controlling signal to
traverse through the multiplexer tree, based on the given input
pair. At each level, it compares the input values to the pre-
stored center coordinate values, and determine which branch
(if exits) it should take next. Otherwise, the current node is a
quadtree leaf and a valid address is selected.

The algorithm generates the circuit by traversing through
the quadtree. Since a new unique address is needed for every
leaf being visited, a global counter is used to determine the
addresses. The width of the circuit datapath is then determined
using the last address generated (i.e. the maximum address).

B. Interpolation Circuit

The circuit takes the address provided by the addresing
circuit as and input and uses it to look up values that are
pre-stored in the Block RAM. These values can be used

Size of Compressed CCRF
α=1 α=4 α=16 α=64

Number of entries 4087 4102 4234 4954
Compression factor 64.1 63.9 61.9 52.9

Mean error 0.00099 0.00099 0.00099 0.00098
Expected error 0.00091 0.00090 0.00088 0.00064

Mean depth 5.5 5.5 5.5 5.5
Expected depth 6.6 6.6 6.6 6.9

Actual slice usage 869 894 932 1129

TABLE II: The number of entries depending on the choice of α. The
compression factor is calculated based on the number of CCRF lookup entries
required divide by the number of the entries after compression. The CCRF
without compression contains 1024× 1024 floating-point entries.

to perform arithmetic operation (as shown in Fig. 6) for
bilinear interpolation. In order to maintain high throughput,
the intermediate stages are pipelined using registers.

C. Compression Performance

We wrote the compression in C programming language to
output the compressed CCRF lookup table. From Table II, we
list the minimum compression factor, expected and mean error
over the entire CCRF lookup, with four selections of α value.

The minimum compression factor summarizes the amount
of compression achieved by taking the ratio of the total number
of entries in the CCRF lookup table over the compressed one:

minimum compression factor =
N2

leaf nodes · 4
(3)

The constant 4 is the upper bound of the maximum
redundancy of the corner value storage that overlap with
adjacent CCRF lookup points.

For α = 1, the effective maximum error bound is to one
pixel value. As α increases, the tighter error bound demands
higher precision from the interpolated results. However, the
number of entries after compression scales sublinearly with
respect to increase in α. This shows our compression algorithm
is capable of achieving high compression rate with tight error
bound.

For resource estimation without considering optimization
effort performed by the CAD tool, we have:

Multiplexers = # None-leaf Nodes

Comparators = # None-leaf Nodes ∗ 2

Addresses = # Leaves

The resource usaged reported by the vendor CAD tool are also
summarized in Table II.

The proposed CCRF compression algorithm simply uti-
lizes the logic slices as an alternative memory available on the
hardware. However, the slice usage is sublinear with respsect
to the increase of the error bound, indicating an efficient usage
of logic slices.

This result is amenable for implementation on highly
memory-constrained low-power FPGA platforms. Construc-
tion of the compositing function is performed by non-linear
optimization of a Bayesian formulation of the compositing
problem, where we select our prior algorithm to create an
accurate estimator that is smooth for robustness and enhanced
compression. We solve the estimator over a regular grid in the
unit square, forming a two-dimensional lookup table.

110 2013 IEEE International Symposium on Technology and Society (ISTAS)

Implementation of this solution on FPGA-based Digital
Eye Glass then relies on the compression of this lookup table
into a quadtree form that allows for random access, and uses
bilinear interpolation to approximate values for intermediate
points. This form allows for selective control over error
bounds, depending on the expected use of the table, which
is easily obtained for a particular image sensor.

IV. DOMAIN TRANSFORM FILTERING IMPLEMENTATION

Spatial tonal mapping and compression needs to be
performed on the HDR video since ordinary monitors can
not display the produced HDR video stream. The domain
transform method proposed by Gastal et al. [21] reduces the
computational intensity of many existing multi-dimensional
high-quality filter kernels [22], [23].

The domain transform method reduces the computational
intensity of many existing multi-dimensional filter kernels [22].
The key idea is to construct a 1-dimensional filter kernel that
preserves the original distance in higher dimensions between
adjacent pixels, thus maintaining the edge-preserving property
of filter kernels in lower dimensions [23].

Assuming that the number of independent channels c
in the input frame is three. Let I(x, y) represent the two
dimensional input frame.

I ′cx =
dIc
dx

= I(x+ h)− I(x)

I ′cy =
dIc
dy

= I(y + h)− I(y)

where, h = 1.

Partial finite differences are taken to compute the domain
transform. The domain transforms, ct′x and ct′y are calculated
as:

ct′x(u) = 1 +
σs

σr

c∑
i=1

|I ′cx|

ct′y(u) = 1 +
σs

σr

c∑
i=1

|I ′cy|

σs and σr are the spatial standard deviation and range standard
deviation of the filter kernel respectively [21]. The domain
transforms ct′x(u), ct′y(u), describe the difference in pixel
values between adjacent pixels in 1-dimensional space. It is
important to process all channels of the frame at once for edge-
preserving filtering. Processing each channel independently
can introduce artifacts near the edges [21].

The input image is then 1-dimensionally convolved with
the filter kernels Vx(u) and Vy(u). The horizontal convolution
is performed first on the input image with Vx(u). The result,
Fcx, is then vertically convolved with Vy(u) to obtain the
output image.

Vx(u) = exp

[
(−
√
2/σs)(ct

′
x(u))

]

Vy(u) = exp

[
(−
√
2/σs)(ct

′
y(u))

]

The effect of the filter is scaled inversely proportional to
the domain transform, ct′(u). Namely, if pixel u has a large
ct′(u) value, an edge occurs at u. The filtering has little effect

Input Double
Buffer

1st Column Buffer

Output
Buffer

Vy
Buffer

Left to Right
and

Bottom to Top
Buffer

Right to Left
Buffer

Top to
Bottom
Buffer

Vx
Buffer

Vx

LR

Vy

BT

RL

TB

Fig. 7: The top-level block diagram of the filter datapath. Vx and Vy are
calculated just once from the original frame. The output of each filter is the
input of the next. Therefore the output of each of the three inner filters needs
to be fully buffered in an intermediate block RAM.

on pixel u when it is large, hence preserving the edges.

Fcx(u) =

∫ ∞

−∞
Ic(x)Vx(u− x)dx

Fc(u) =

∫ ∞

−∞
Fcx(y)Vy(u− y)dy

This algorithm applies a filter on the input pixel stream,
as shown in Fig 7. The filter performs horizontal filtering and
then vertical filtering using kernels V x and V y respectively,
which are computed from the input image. In total this takes
four passes on the image: left-to-right, right-to-left, downwards
and upwards.

When performing the horizontal filtering, the filter first
processes the frame left to right as shown in Fig 8. The filtering
result of a given pixel relies on the result of computations
performed to all pixels along the same line up to the current
pixel. When computing the horizontal filtering, since there
is no vertical dependency between the filtering, we pipelined
columns of data instead of proceeding line by line. This greatly
improved the performance of the algorithm by reducing the
latency and producing continuous throughput. In a similar way,
when implementing the vertical filtering, we took advantage of
the horizontal independency and computed whole lines of data
on each pass over the image.

Waiting for the previous output would not be acceptable,
since this would introduce significant pipleine latency. Utiliz-
ing these pipeline stages to carry out additional computations
would allow us make better use of the highly pipelined
functional units and achieve a high throughput.

Since there is no vertical depedency between pixels during
the horizontal filtering process, the hardware is piplelined,
making use of the vertical independece by performing the
horizontal filtering on two columns at a time.

Once the left to right pass is completed, the filter acts right
to left on the computed results. At present, this is achieved by
buffering the results in on-chip block RAM.

As a proof of concept, this paper presents the FPGA
implementation of this recursive filtering process.

2013 IEEE International Symposium on Technology and Society (ISTAS) 111

−

×
+

first_column

Input Double
Buffer

delay

Left to Right
Buffer

Left to Right Filtering

To Vx
Vx

delay

Current
Stage
Buffer

General Case Filtering

−

×
+

Vx

first_column

Previous
Stage
Buffer

Fig. 8: Filter operations are described here in detail. The figure above shows
the datapath for the left to right filter, which is the only filter that does not need
to read Vx or Vy from the buffer. Its output needs to be buffered since the
right to left filter cannot start until the image has been completely processed.
All the filters follow the pattern shown here.

A. Input Block RAM

To take advantage of the data independency described
earlier, this block RAM stores transposed versions of the input
frames. Incoming data is stored and replicated in two buffers
in order to provide an additional read port. This allows for two
adjacent column pixels to be accessed simulatenously at every
clock cycle allowing for maximum throughput.

Two buffers are used to store the incoming integer pixel
data of all three 8-bit colour channels. The RAM blocks store
a window of the incoming image or video frame.

B. Floating Point Conversion and Normalization

The data is read column wise in fixed point format from
the RAM modules and is then converted to floating point
representation. The data is then normalized to the range[0,1].
Floating point computation provides more accuracy as com-
pared to its fixed point counterpart. Since this algorithm is
computationally intensive, highly pipelined functional units
that run above 200 MHz provide the necessary computational
bandwidth.

C. Double Buffering and Addressing

Two columns must be read simultaneously, which requires
the original frame to be buffered twice. The pixels are ac-
cessed by assigning each value a line address and a column
address. This way of uniquely addressing the pixels with two
coordinates allows better control of the reading and writing of
values that access the buffers. Another advantage of this type
of addressing is that a frame can effectively be transposed by
swapping line and column addresses.

D. Kernel Computation

Before performing recursive filtering, two kernel matrices
V x and V y must be computed from all three RGB channels.

1) Horizontal Difference: This module (“compute Vx” in
Fig 7) calculates the difference between adjacent pixels in
the original image by subtracting two adjacent columns. This
contributes towards the detection of vertical edges in the image.
The result of the difference is returned in the absolute form.

2) Vertical Difference: In a similar way (“compute Vy”
in Fig 7) to the horizontal difference, the vertical difference
of neighbouring pixels in rows is computed in parallel. This
provides the horizontal edges of the image.

=

=

=

=

Input Frame

p1 p2 p3 . . .

. . .

. . .

. . . PR
n-2

. . .

. . .

PL
n

PR
n-1

R to L Filtered Frame

Vx

Vx0 Vx1 Vx2 Vx
n-2

Vx
n-1

Vx
n

. . .

p3

p2* Vx1p1 p2 + PL2

* + PL3PL2 p3 Vx2

L to R Filtered Frame

. . . PL
n

PL
n-1

PL
n-2

PL3

L to R Filtered Frame

p1 PL2 PL3 . . .

. . .

PL
n

* + PL2

* +

PL
n-1

Vx
n

PR
n-1

PL
n-2

Vx
n-1

PR
n-2

PL
n-1

PL
n-2

 L to R Filtering

 R to L Filtering

Fig. 9: Visual representation of the horizontal filtering operation in the
recursive filter operations. The left to right filtering is shown on the top half
of the figure, and the right to left filtering is shown on the bottom half of the
figure. Pixels and their relative positions in the matrices involved are uniquely
identified by colors and patterns. Note the recursive nature of the algorithm
and the horizontal data dependency.

3) Channel Merging and Zero Padding: The differences
of the RGB channels are computed at the same time. At this
stage of the pipeline, they are added together. In the case of
the horizontal differences, a column of zeroes is added before
the first column of the image, and in the case of the vertical
differences, a row of zeroes is padded at the top. This is to
match the dimensions of these matrices to that of the original
image. At this point the domain transform of the image has
been calculated.

4) Derivative of the Domain Transform: Every element
in both the horizontal and vertical differences matrices is
multiplied by a factor, σs/σr, and then added to 1. This
results in two new matrices, dHdx and dVdy. The mathematical
constants σs and σr are precomputed.

5) Computing Vx: To implement this block in hardware, a
multiplier module is used together with a natural exponential
module. The following mathematical relation was used to
compute the result.

ab = exp [b · ln(a)]
The output of this block gives us V x and V y, which

completes the first stage of the pipeline. The computed values
of V x are now used to perform the recursive horizontal
filtering.

E. Recursive Filtering

The recursive filtering process consists of two major
operations. The first operation performs horizontal filtering and
it consists of left to right followed by right to left filtering, as
shown in Fig 9.

In the left to right operation, the algorithm starts operating
on the second column, subtracting the previous column pixel
to the current one, and multiplying the result with the value
of Vx in the position of the current pixel.

The result is added back to the current pixel of the input
frame to give the final result of the left to right filtering process.
This result is used recursively to calculate the pixel values
for the next column. Once the left to right filtered frame is
computed, in a similar way the right to left frame is also
recursively computed.

112 2013 IEEE International Symposium on Technology and Society (ISTAS)

PREVIOUS
COLUMN 1

PREVIOUS
COLUMN 0

HSYNC

PREVIOUS
STAGE

BUFFER READ

CURRENT
STAGE

FILTERING

CURRENT 0 -
PREVIOUS 1

MULTIPLY BY
Vx or Vy 1

ADD TO
PREVIOUS 1

CURRENT
COLUMN 1

PREVIOUS
COLUMN 2

LR COLUMN 1
- COLUMN 2

MULTIPLY BY
Vx or Vy 2

ADD TO
COLUMN 2

CURRENT
COLUMN 2

CURRENT
COLUMN 0

Vx or Vy
BUFFER READ

Vx COLUMN
1

Vx COLUMN
0

Vx COLUMN
2

CURRENT
STAGE

BUFFER READ

CURRENT
COLUMN 0

CURRENT
COLUMN 1

Fig. 10: Timing diagram that summarizes the data flow of the recursive
filtering process. The hsync (horizontal synchronization) signal is used for
timing synchronization of operations on columns or rows and vsync (vertical
synchronization) signal to synchronize the different stages of the pipeline,
namely left to right, right to left, top to bottom and bottom to top.

Resource
ALUT Registers ALM DSP18 BRAM(M9K)

29009 40891 29007 263 1094

TABLE III: Resource usage of domain transform implementation.

The second process is a vertical filtering operation which
performs a process similar to horizontal filtering. In hardware
implementation, the result of the horizontal filtering process
is transposed and fed through the same horizontal filtering
module, with the difference that the computations now use
V y instead of V x.

F. Sequencing and Timing

Three control signals will be referred to in the following
section; hsync which is the horizontal synchronization signal,
vsync, which is the vertical synchronization sistageand de,
which is the input data enable signal.

The hsync signal is used for timing synchronization of
operations on columns or rows, and vsync to synchronize
the different stages of the pipeline. The left to right filtering
process begins after a delay of 71 clock cycles from the rising
edge of the de signal. This is the time that it takes to produce
the first V x result.

Taking the example of the left to right filter module, the
subtraction is performed between the two input image columns
I1 and I0. The result is produced in 7 clock cycles. The
subtraction result is multiplied by the V x values corresponding
to the I1 column. This multiplication takes 5 clock cycles to
complete. The result of the multiplication is added to the input
image I1 to produce the result of the left to right filtering
process. This result is stored in the buffer and made available
to the computation of the next column at the next hsync, as
well as to the next module, which is the right to left filter
during the next vsync signal. A generalized representation of
the timing is shown in Fig. 10.

G. Domain Transform Performance

The latency observed in the Domain Transform implemen-
tation on an FPGA was 0.1143ms for a 128× 128 pixel color
image as compared to a 7ms latency reported by Gastal et. al
for a 1 megapixel color image implemented on a GPU [21].
The resource ultilization of the implementation is listed in
Table III.

V. RESULTS

The compressed CCRF lookup table requires storage of all
corner values per pair (f1, f2) for interpolation. Without any
compression, this method would require as many as four times
of the storage space due to redundancies of identical CCRF
values shared between adjacent lookups. This is achieved by
implementing a quadtree structure for leaf node searches that
holds the address to the corners stored in the actual memory
units. However, the compression is able to reduce the number
of lookup entries by a factor greater than four times. This
compression factor depends on the selection of α.

For the HDR compositing using the quadtree approach,
the implementation features a 60× compression of the memory
requirements needed for the Comparametric Camera Response
Function (CCRF) implementation, which itself achieves an ap-
proximately 5000× speedup over other non-linear optimization
based HDR imaging implementations [19].

The domain transform filtering implementation we present
has been adapted for use on an low-power FPGA platform.
In comparison to implementations on GPU, the FPGA imple-
mentation produces competitive results with added advantage
of low power consumption and portability. This is ideal for
implementations on wearable computers.

This is the first implementation of the domain transform
on an FPGA platform, to our knowledge. The implementation
presented in this paper is power efficient and can be used in
portable embedded applications such as wearable computers.
The domain transform can be used for [21] detail manipulation,
tone mapping, stylization, filtering, colorization and recoloring
of images or video frames in real time, depending on the
selection of relevant parameters.

VI. FUTURE WORK

There are two areas in which work is presently on-going.
One is in correctly pipelining the entire quadtree lookup on
FPGA, so that many lookups may be “in-flight” at once, but
that the circuit returns one value per clock cycle. This would
enable higher throughput, or equivalently allow the circuit to
be turned off for a longer period, per output frame. The other
area is in adapting the domain transform to use external (DDR)
memory, which would enable a substantially higher resolution
to be processed.

VII. CONCLUSION

We have presented a highy efficient implementation of
HDR (High Dynamic Range) imaging system suitable for im-
plementation in low-power FPGA (Field Programmable Gate
Array) chips that can be built into a seeing aid or visual mem-
ory aid such as the Digital Eye Glass, lifeglogging devices, or
other sousveillance (inverse surveillance) technologies.

Working within the resource constraints of wearable plat-
forms, we find that computationally- and memory-intensive
algorithms can be implemented efficiently, typically by taking
advantage of the recursive and self-similar nature of computer-
vision algorithms. Thus, using current technology, we have
successfully demonstrated how to implement algorithms that
substantially enhance the human visual system, in a form that
is practical for wearable applications.

2013 IEEE International Symposium on Technology and Society (ISTAS) 113

REFERENCES

[1] “Online etymology dictionary, douglas harper,” 2010. [Online].
Available: http://dictionary.reference.com/browse/surveillance

[2] S. Mann, J. Nolan, and B. Wellman, “Sousveillance: Inventing and
using wearable computing devices for data collection in surveillance
environments.” Surveillance & Society, vol. 1, no. 3, pp. 331–355, 2002.

[3] K. Michael and M. Michael, “Sousveillance and point of view tech-
nologies in law enforcement: An overview,” 2012.

[4] J. Bradwell and K. Michael, “Security workshop brings’ sousveil-
lance’under the microscope,” 2012.

[5] G. Fletcher, M. Griffiths, and M. Kutar, “A day in the
digital life: a preliminary sousveillance study,” SSRN,
http://papers.ssrn.com/sol3/papers.cfm?abstract id=1923629,
September 7, 2011.

[6] C. Reynolds, “Negative sousveillance,” First International Conference
of the International Association for Computing and Philosophy (IA-
CAP11), pp. 306 – 309, July 4 - 6, 2011, Aarhus, Denmark.

[7] V. Bakir, Sousveillance, media and strategic political communication:
Iraq, USA, UK. Continuum, 2010.

[8] F. M. Candocia, “A least squares approach for the joint
domain and range registration of images,” IEEE ICASSP,
vol. IV, pp. 3237–3240, May 13-17 2002, avail. at
http://iul.eng.fiu.edu/candocia/Publications/Publications.htm.

[9] ——, “Synthesizing a panoramic scene with a common exposure via the
simultaneous registration of images,” FCRAR, May 23-24 2002, avail.
at http://iul.eng.fiu.edu/candocia/Publications/Publications.htm.

[10] A. Barros and F. M. Candocia, “Image registration in
range using a constrained piecewise linear model,” IEEE
ICASSP, vol. IV, pp. 3345–3348, May 13-17 2002, avail. at
http://iul.eng.fiu.edu/candocia/Publications/Publications.htm.

[11] M. A. Robertson, S. Borman, and R. L. Stevenson, “Estimation-
theoretic approach to dynamic range enhancement using multiple ex-
posures,” Journal of Electronic Imaging, vol. 12, no. 2, pp. 219–228,
2003.

[12] C. Wyckoff, “An experimental extended response film,” SPIE Newslett,
pp. 16–20, 1962.

[13] S. Mann, “Compositing multiple pictures of the same scene,” in
Proceedings of the 46th Annual IS&T Conference, vol. 2, 1993.

[14] R. Lo, S. Mann, J. Huang, V. Rampersad, and T. Ai, “High dynamic
range (hdr) video image processing for digital glass,” in Proceedings of
the 20th ACM international conference on Multimedia. ACM, 2012,
pp. 1477–1480.

[15] M. D. Tocci, C. Kiser, N. Tocci, and P. Sen, “A Versatile HDR
Video Production System,” ACM Transactions on Graphics (TOG)
(Proceedings of SIGGRAPH 2011), vol. 30, no. 4, 2011.

[16] S. Kang, M. Uyttendaele, S. Winder, and R. Szeliski, “High dynamic
range video,” ACM Transactions on Graphics, vol. 22, no. 3, pp. 319–
325, 2003.

[17] S. Mann, R. Lo, J. Huang, V. Rampersad, and R. Janzen, “Hdrchitecture:
real-time stereoscopic hdr imaging for extreme dynamic range,” in ACM
SIGGRAPH 2012 Emerging Technologies. ACM, 2012, p. 11.

[18] S. Mann, R. Lo, K. Ovtcharov, S. Gu, D. Dai, C. Ngan, and T. Ai, “Re-
altime hdr (high dynamic range) video for eyetap wearable computers,
fpga-based seeing aids, and electric eyeglasses,” image, vol. 1, no. 2,
pp. 3–4, 2012.

[19] M. A. Ali and S. Mann, “Comparametric image compositing: Compu-
tationally efficient high dynamic range imaging,” in Acoustics, Speech
and Signal Processing (ICASSP), 2012 IEEE International Conference
on. IEEE, 2012, pp. 913–916.

[20] S. Mann, Intelligent Image Processing. John Wiley and Sons,
November 2 2001, iSBN: 0-471-40637-6.

[21] E. S. Gastal and M. M. Oliveira, “Domain transform for edge-aware
image and video processing,” ACM Transactions on Graphics (TOG),
vol. 30, no. 4, p. 69, 2011.

[22] J. Chen, S. Paris, and F. Durand, “Real-time edge-aware
image processing with the bilateral grid,” ACM Trans.
Graph., vol. 26, no. 3, Jul. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1276377.1276506

[23] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, “Edge-preserving
decompositions for multi-scale tone and detail manipulation,” in ACM
Transactions on Graphics (TOG), vol. 27, no. 3. ACM, 2008, p. 67.

114 2013 IEEE International Symposium on Technology and Society (ISTAS)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

